নিচের অপশন গুলা দেখুন
1 উত্তর
করেছেন
অজ্ঞাতকুলশীল
উত্তর প্রদান
info_outline
করেছেন Admin
নির্বাচিত
সঠিক উত্তর হচ্ছে:
ব্যাখ্যা:
$$\eqalign{
& {\left( {r\cos \theta - \sqrt 3 } \right)^2} + {\left( {r\sin \theta - 1} \right)^2} = 0 \cr
& \Rightarrow {\left( {r\cos \theta - \sqrt 3 } \right)^2} = 0,{\text{ }}{\left( {r\sin \theta - 1} \right)^2} = 0 \cr
& \Rightarrow r{\text{ cos}}\theta = \sqrt 3 ........(i) \cr
& \Rightarrow r\sin \theta = 1.........(ii) \cr
& {\text{Squaring and adding equation (i) and (ii)}} \cr
& \Rightarrow {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta = 3 + 1 \cr
& \Rightarrow {r^2}\left( {{\text{co}}{{\text{s}}^2}\theta + {{\sin }^2}\theta } \right) = 4 \cr
& \Rightarrow {r^2} = 4 \cr
& \Rightarrow r = 2 \cr
& {\text{tan}}\theta = \frac{{r\sin \theta }}{{r{\text{ cos}}\theta }} = \frac{1}{{\sqrt 3 }}{\text{ and }}r{\text{ cos}}\theta = \sqrt 3 \cr
& \cos \theta = \frac{{\sqrt 3 }}{r}, \cr
& \sec \theta = \frac{r}{{\sqrt 3 }} \cr
& \frac{{r\tan \theta + \sec \theta }}{{r\sec \theta + \tan \theta }} \cr
& = \frac{{\frac{r}{{\sqrt 3 }} + \frac{r}{{\sqrt 3 }}}}{{\frac{{{r^2}}}{{\sqrt 3 }} + \frac{1}{{\sqrt 3 }}}} \cr
& = \frac{{r\left( {\frac{2}{{\sqrt 3 }}} \right)}}{{\frac{{{r^2} + 1}}{{\sqrt 3 }}}} \cr
& = \frac{{2r}}{{{r^2} + 1}} \cr
& = \frac{{2 \times 2}}{{{2^2} + 1}} \cr
& = \frac{4}{5} \cr
& \cr
& {\bf{Alternate:}} \cr
& r = 2 \cr
& {\text{tan}}\theta = \frac{{r\sin \theta }}{{r{\text{ cos}}\theta }} = \frac{1}{{\sqrt 3 }} \cr
& \theta = {30^ \circ } \cr
& = \frac{{2\tan {{30}^ \circ } + \sec {{30}^ \circ }}}{{2\sec {{30}^ \circ } + \tan {{30}^ \circ }}} \cr
& = \frac{{2 \times \frac{1}{{\sqrt 3 }} + \frac{2}{{\sqrt 3 }}}}{{2 \times \frac{2}{{\sqrt 3 }} + \frac{1}{{\sqrt 3 }}}} \cr
& = \frac{4}{5} \cr} $$